Галёркин - определение. Что такое Галёркин
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Галёркин - определение

Найдено результатов: 5
Галёркин      

Борис Григорьевич [20.2 (4.3).1871, Полоцк, - 12.7.1945, Ленинград], советский инженер и учёный в области теории упругости, академик АН СССР (1935; член-корреспондент 1928), инженер-генерал-лейтенант. В 1899 окончил Петербургский технологический институт. В 1906 за участие в революционном движении был осужден на 11/2 года тюремного заключения. Преподавательскую деятельность начал в 1909.

Труды Г., относящиеся к проблемам строительной механики и теории упругости, способствовали внедрению современных методов математического анализа в исследования работы сооружений, конструкций и машин. Разработал эффективные методы точного и приближённого интегрирования уравнений теории упругости. Г. - один из создателей теории изгиба пластинок. Исследовал влияние формы пластинки на распределение в ней усилий, эффект распределения местного давления, влияние упругости опорного контура. Предложенная Г. в 1930 форма решения уравнений упругого равновесия, содержащая три бигармонические функции, позволила эффективно решить многие важные пространственные задачи теории упругости. В работах по теории оболочек Г. отказался от общепринятых гипотез относительно характера изменения смещений по толщине и ввёл др. допущения, обеспечивающие большую точность и возможность распространить теорию на оболочки средней толщины.

Г. был консультантом при проектировании и строительстве крупных гидростанций (Волховгэс, Днепрогэс, Дзорагэс и др.), а также теплоэлектростанций ("Красный Октябрь", "Дубровская" и др.). Государственная премия СССР (1942). Награжден 2 орденами Ленина.

Соч.: Собр. соч., т. 1-2, М., 1952-53 (в 1 томе имеется библ. трудов Г.),

Лит.: Крылов А. Н. [и др.], Академик Б. Г. Галеркин. (К 70-летию со дня рождения), "Вестник АН СССР", 1941, № 4; Соколовский В. В., О жизни и научной деятельности наук академика Б. Г. Галёркина, "Изв. АН СССР. Отделение технических ", 1951, № 8.

Б. Г. Галёркин.

ГАЛЕРКИН      
Борис Григорьевич (1871-1945) , российский инженер и ученый, академик АН СССР (1935), инженер-генерал-лейтенант (1942). Один из создателей теории изгиба пластин. Труды по строительной механике и теории упругости способствовали внедрению математических методов в инженерных исследованиях. Государственная премия СССР (1942).
Метод Галёркина         
МЕТОД ПРИБЛИЖЁННОГО РЕШЕНИЯ КРАЕВОЙ ЗАДАЧИ
Метод Галеркина; Метод Бубнова — Галёркина; Метод Бубнова — Галеркина; Метод Бубнова-Галёркина; Метод Бубнова-Галеркина; Бубнова — Галёркина метод; Метод Галёркина — Петрова
Метод Галёркина (метод Бубнова — Галёркина) — метод приближённого решения краевой задачи для дифференциального уравнения L[u]=f(x). Здесь оператор L[\cdot] может содержать частные или полные производные искомой функции.
Разрывный метод Галёркина         
Разрывный метод Галёркина (, сокращенно DGM) — метод решения операторных уравнений, в основном дифференциальных уравнений. Является развитием классического метода конечных элементов (МКЭ), основанного на вариационной постановке Галёркина.
Ритца и Галёркина методы      

широко распространённые Прямые методы решения главным образом вариационных задач и краевых задач математического анализа (см. Краевые задачи, Вариационное исчисление).

Метод Ритца применяется большей частью для приближённого решения вариационных задач и тех краевых задач, которые сводятся к вариационным. Пусть задан Функционал V [y (x)] (или более сложный функционал) и требуется найти такую функцию у (х), принимающую в точках x0 и xi заданные значения α = у (х0) и β = у (х1), на которой функционал V [y (x)] будет достигать Экстремума. Значения исследуемого на экстремум функционала V [y (x)] рассматриваются не на всех допустимых в данной задаче функциях у (х), а лишь на всевозможных линейных комбинациях вида

с постоянными коэффициентами ai, составленных из n первых функций некоторой выбранной системы φ1(x), φ2(х),..., φп (х),... (от удачного выбора этой системы функций зависит эффективность применения метода к решению конкретных задач). Необходимым условием выбора системы функций φ1(х) является требование, чтобы функции уп (х) удовлетворяли условиям уп (хо) = α и yn (x1) = α для всех значений параметров a1. При таком выборе функций уп (х) функционал V [y (x)] превращается в функцию Ф (а1, a2,..., an) коэффициентов ai, последние выбирают так, чтобы эта функция достигала экстремума, т. е. определяют их из системы уравнений

(i=1, 2, ..., n).

Например, пусть требуется решить задачу о минимуме интеграла

при условии y (0) = y (1) = 0. В качестве функций φi (x) можно взять xi (1 - х), тогда

.

Если n = 2, то . Для определения коэффициентов a1 и a2 получаем после вычислений два уравнения

;

.

Решением этих уравнений являются числа a1 = 71/369 и a2 = 7/41. Следовательно, . Полученное приближённое решение отличается от точного на величину порядка 0,001.

Найденное этим методом приближённое решение уп (х) вариационной задачи при некоторых условиях, касающихся в основном полноты системы функций φi (x), стремится к точному решению у (х), когда n → ∞.

Метод был предложен в 1908 немецким математиком В. Ритцем (W. Ritz). Теоретическое обоснование метода дано сов. математиком Н. М. Крыловым (1918).

Метод Галёркина является широким обобщением метода Ритца и применяется главным образом для приближённого решения вариационных и краевых задач, в том числе и тех, которые не сводятся к вариационным. Основная идея метода Галёркина состоит в следующем. Пусть требуется в некоторой области D найти решение дифференциального уравнения

L [u] = 0 (1)

(L - некоторый дифференциальный оператор, например по двум переменным), удовлетворяющее на границе S области D однородным краевым условиям:

u = 0. (2)

Если функция u является решением уравнения (1) в области D, то функция L [u] тождественно равна нулю в этой области и, следовательно, ортогональна (см. Ортогональность) любой функции в области D. Приближённое решение уравнения (1) ищут в виде

, (3)

где ψi (x, y) (i = 1, 2,..., n) - линейно независимые функции, удовлетворяющие краевым условиям (2) и являющиеся первыми n функциями некоторой системы функций ψ1(x, у), ψ2(х, у),..., ψп (х, у),..., полной в данной области. Постоянные коэффициенты ai выбирают так, чтобы функция L [un] была ортогональна в D первым n функциям системы ψi (x, y):

(4)

(i=1, 2, ..., n).

Например, пусть в области D требуется решить уравнение Пуассона

при условии u = 0 на S. Выбирая систему функций ψi (x, y), ищем решение в виде (3). Система уравнений (4) для определения коэффициентов ai имеет вид:

(i=1, 2, ..., n).

Функции ψi (x, y) можно, в частности, выбирать, пользуясь следующими соображениями. Пусть ω(x, y) - непрерывная функция, имеющая внутри области D непрерывные частные производные второго порядка и такая, что ω(x, y) > 0 внутри D, ω(x, y) = 0 на S. Тогда в качестве системы функций ψi (x, y) можно взять систему, составленную из произведений ω(x, y) на различные степени х и y: , , , , ... Например, если границей области D является окружность S радиуса R с центром в начале координат, то можно положить ω(x, y) = R2 - x2 - y2.

Метод Галёркина применяется при решении широкого класса задач; более общая его формулировка даётся в терминах функционального анализа (См. Функциональный анализ) для решения уравнений вида Au - f = 0, где А - линейный оператор, определённый на линеале, плотном в некотором гильбертовом пространстве H, u - искомый и f - заданный элементы пространства H.

Метод получил распространение после исследований Б. Г. Галёркина (1915); ранее (1913) он применялся для решения конкретных задач теории упругости И. Г. Бубновым, в связи с чем иногда именуется методом Бубнова - Галёркина. Теоретическое обоснование метода принадлежит М. В. Келдышу (1942).

Лит.: Галёркин Б. Г., Стержни и пластинки. Ряды в некоторых вопросах упругого равновесия стержней и пластинок, "Вестник инженеров", 1915, т. 1, № 19, с. 897-908; Михлин С. Г., Вариационные методы в математической физике, 2 изд., М. - Л., 1970; Канторович Л. В. и Крылов В. И., Приближённые методы высшего анализа, 5 изд., Л. - М., 1962; Ritz W., Neue Methode zur Lösung gewisser Randwertaufgaben, "Gesellschaft der Wissenschaften zu Göttingen. Math.-physik. Klasse. Nachrichten", Göttingen, 1908; его же, Über еще neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik, "Journal für die reine und angewandte Mathematik", 1909, Bd 135.

В. Г. Карманов.